Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2286, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480728

RESUMO

Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging cause of human infection with invasive disease incidence and clinical manifestations comparable to the closely related species, Streptococcus pyogenes. Through systematic genomic analyses of 501 disseminated SDSE strains, we demonstrate extensive overlap between the genomes of SDSE and S. pyogenes. More than 75% of core genes are shared between the two species with one third demonstrating evidence of cross-species recombination. Twenty-five percent of mobile genetic element (MGE) clusters and 16 of 55 SDSE MGE insertion regions were shared across species. Assessing potential cross-protection from leading S. pyogenes vaccine candidates on SDSE, 12/34 preclinical vaccine antigen genes were shown to be present in >99% of isolates of both species. Relevant to possible vaccine evasion, six vaccine candidate genes demonstrated evidence of inter-species recombination. These findings demonstrate previously unappreciated levels of genomic overlap between these closely related pathogens with implications for streptococcal pathobiology, disease surveillance and prevention.


Assuntos
Infecções Estreptocócicas , Streptococcus , Vacinas , Humanos , Streptococcus pyogenes/genética , Fluxo Gênico
3.
Nat Genet ; 51(6): 1035-1043, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133745

RESUMO

Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity. We identified the existence of more than 290 clinically associated genomic phylogroups across 22 countries, highlighting challenges in designing vaccines of global utility. To determine vaccine candidate coverage, we investigated all of the previously described GAS candidate antigens for gene carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to have both low naturally occurring sequence variation and high (>99%) coverage across this diverse GAS population. This technological platform for vaccine coverage determination is equally applicable to prospective GAS vaccine antigens identified in future studies.


Assuntos
Genômica , Vacinas Estreptocócicas/genética , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Filogenia , Recombinação Genética , Infecções Estreptocócicas/prevenção & controle , Streptococcus pyogenes/classificação
4.
Infect Immun ; 86(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581188

RESUMO

Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (ΔadcA ΔadcAII) and export (ΔczcD) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens.


Assuntos
Streptococcus pyogenes/metabolismo , Zinco/metabolismo , Zinco/toxicidade , Animais , DNA Bacteriano , Deleção de Genes , Regulação da Expressão Gênica/imunologia , Humanos , Complexo Antígeno L1 Leucocitário/metabolismo , Lisossomos , Camundongos , Camundongos Transgênicos , Neutrófilos/fisiologia , Plasminogênio/genética , Plasminogênio/metabolismo , Pele/citologia , Pele/metabolismo , Pele/microbiologia , Dermatopatias Bacterianas/metabolismo , Dermatopatias Bacterianas/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA